
Joschka Roffe
Stuart Ferguson Tutorial 9

IQC 2024-25
November 17, 2025

Problem 1: Pauli Commutation Relations

1a. Consider the two Pauli operators P ∈ P⊗n and G ∈ P⊗n. These operators are said to
intersect trivially at position i if Pi = Gi or Pi, Gi = I. They intersect non-trivially if Pi 6= Gi

and Pi, Gi 6= I. Show that P and G will commute if they intersect non-trivially in an even
number of locations and anti-commute if they intersect in an odd number of locations.

1b. Do the Pauli operators X1Z2Y5 and X2Y5X7 commute or anti-commute?

1c. Do the Pauli operators X1Z2 and Z1X2 commute or anti-commute?

Problem 2: The two-qubit repetition code for phase flips

|ψ〉1

|0〉2

H H

H

|ψ〉L E E |ψ〉L

|0〉A H

X1X2

H

E |ψ〉L

Encoder Syndrome extraction

Figure 1: The two-qubit repetition code for phase flips

Figure 1 shows the two-qubit repetition code protocol for detecting phase-flip errors.

2a. What are the |0〉L and |1〉L logical basis states of this code?

2b. Show that the stabiliser generator X1X2 acts as the identity on the basis states.

2c. Show that immediately before the measurement of auxiliary qubit A the system is in
the following state:

1

2
(I +X1X2)E |ψ〉L |0〉A +

1

2
(I −X1X2)E |ψ〉L |1〉A

2d. Show that the measurement of auxiliary qubit A1 yields ‘0’ if [E,X1X2] = 0 and ‘1’ if
{E,X1X2} = 0.

2e. Complete syndrome table (Tab 1).

2f. Identify an XL and ZL logical operator for this code. Show that these operators have
the correct action on the logical basis states.
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Error s1
I1 ⊗ I2
X1 ⊗ I2
I1 ⊗X2

X1 ⊗ I2
X1 ⊗X2

I1 ⊗ Z2

Z1 ⊗ II
Z1 ⊗ Z2

Table 1: Syndrome table for the 2-qubit repetition code for phase flips.

2g. What is the distance of this code?

Problem 3: The Five-Qubit Code

The five-qubit code (also known as the ‘perfect code’) is defined by the stabiliser group S
generated by 〈S〉 :

S = 〈S〉 =

〈X1Z2Z3X4I5
I1X2Z3Z4X5

X1I2X3Z4Z5

Z1X2I3X4Z5

〉

3a. How many logical qubits are encoded by this code?

3b. The logical basis states of the five-qubit code are given below.

|0L〉 =
1

4
(|00000〉+ |10010〉+ |01001〉+ |10100〉+ |01010〉 − |11011〉 − |00110〉 − |11000〉

−|11101〉 − |00011〉 − |11110〉 − |01111〉 − |10001〉 − |01100〉 − |10111〉+ |00101〉),

|1〉L =
1

4
(|11111〉+ |01101〉+ |10110〉+ |01011〉+ |10101〉 − |00100〉 − |11001〉 − |00111〉

−|00010〉 − |11100〉 − |00001〉 − |10000〉 − |01110〉 − |10011〉 − |01000〉+ |11010〉).

Show that both XL = X1X2X3X4X5 and ZL = Z1Z2Z3Z4Z5 are a valid choice of logical
operators for the code.

3c. Complete the single-qubit syndrome table for this code:
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Error s1 s2 s3 s4
X1 ⊗ I2 ⊗ I3 ⊗ I4 ⊗ I5
Y1 ⊗ I2 ⊗ I3 ⊗ I4 ⊗ I5
Z1 ⊗ I2 ⊗ I3 ⊗ I4 ⊗ I5
I1 ⊗X2 ⊗ I3 ⊗ I4 ⊗ I5
I1 ⊗ Y2 ⊗ I3 ⊗ I4 ⊗ I5
I1 ⊗ Z2 ⊗ I3 ⊗ I4 ⊗ I5
I1 ⊗ I2 ⊗X3 ⊗ I4 ⊗ I5
I1 ⊗ I2 ⊗ Y3 ⊗ I4 ⊗ I5
I1 ⊗ I2 ⊗ Z3 ⊗ I4 ⊗ I5
I1 ⊗ I2 ⊗ I3 ⊗X4 ⊗ I5
I1 ⊗ I2 ⊗ I3 ⊗ Y4 ⊗ I5
I1 ⊗ I2 ⊗ I3 ⊗ Z4 ⊗ I5
I1 ⊗ I2 ⊗ I3 ⊗ I4 ⊗X5

I1 ⊗ I2 ⊗ I3 ⊗ I4 ⊗ Y5
I1 ⊗ I2 ⊗ I3 ⊗ I4 ⊗ Z5

Table 2: Single-Qubit Syndrome Table (Tab 2) for the Five-Qubit Code.

3d. Explain why this is a correction code with distance d ≥ 3.

3e. Find a pair of XL and ZL logical operators of weight 3.

3f. What are the [[n, k, d]] parameters of this code?

Problem 4: Concatenating the [[3, 1, 1]] phase-flip code
into the [[4, 2, 2]] code

Consider the [[4, 2, 2]] code defined by the stabiliser group S generated by 〈S〉 :

S = 〈S〉 =

〈
X1X2X3X4

Z1Z2Z3Z4

〉
,

and logical operator basis:

L =

〈XL1 = X1I2X3I4
XL2 = X1X2I3I4
ZL1 = Z1Z2I3I4
ZL2 = Z1I2Z3I4

〉
.

Consider also the [[3, 1, 1]] phase-flip code defined by the stabiliser group S generated by 〈S〉:

S = 〈S〉 =

〈
X1X2I3
I1X2X3

〉
,
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and logical operator basis:

L =

〈
XL = X1I2I3
ZL = Z1Z2Z3

〉
.

4a. Write a generating set of the stabilisers of code obtained by concatenating the [[3, 1, 1]]
phase-flip code into each of the qubits of the [[4, 2, 2]] code. E.g. replace each qubit i of the
[[4, 2, 2]] code by three qubits i1, i2, i3 that form a block encoded with the [[3, 1, 1]] phase-flip
code.

4b. How many logical qubits are encoded by this concatenated code?

4c. Find a basis of logical operators for this concatenated code.

4d. What is the distance of this concatenated code?

4e. What are the code parameters [[n, k, d]] of this concatenated code?

4f. The dX distance and dZ distance of a code are defined as the minimum weight of a logical
operator consisting exclusively of PauliX operators and Pauli Z operators respectively. What
are the X-distance and Z-distance of this concatenated code?

Problem 5: The 2× 2 Surface Code

5a. Figure 2 shows the Tanner graph for a surface code defined over 5 qubits. List the four
stabiliser generators that are measured by this code.

q1 S3 q2

S1 q5 S2

q3 S4 q4

Figure 2: The five-qubit surface code. Dashed edges denote Z-type checks and solid edges
X-type checks.

5b. How many logical qubits does this code encode?

5c. This code has distance d = 2. Find the logical operator pair ZL, XL.

5d. Explain why this code is a detection code and not a correction code.
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5e. What are the [[n, k, d]] parameters of this code?

5f. The di distance of a code is defined as the minimum weight of a logical operator consisting
exclusively of Pauli i operators (where i ∈ {X, Y, Z}). Find dX , dY , and dZ for this code.

Problem 6: The 4× 4 Surface Code

6a. Figure 3 shows the Tanner graph for a distance-4 surface code. Two X-errors have
occurred on qubits q20 and q6 activating a non-zero syndrome measurement for stabilisers S17

and S19. Explain why R = X6X20 and R′ = X10X21 are both suitable recovery operations.

q1 S13 q2 S14 q3 S15 q4

S1 q17 S2 q18 S3 q19 S4

q5 S16

X

q6 S17

1
q7 S18 q8

S5

X

q20 S6 q21 S7 q22 S8

q9 S19

1
q10 S20 q11 S21 q12

S9 q23 S10 q24 S11 q25 S12

q13 S22 q14 S23 q15 S24 q16

Figure 3: The distance-4 surface code. Dashed edges denote Z-type checks and solid edges
X-type checks.

6b. The recovery operator R′′ = X7X8X9 would also reset the total syndrome of the surface
code. Explain why this is not a suitable recovery operator.

Problem 7: The Rotated Surface Code

The Tanner graph for a 5× 5 rotated surface code is shown in Figure 4.
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Figure 4: The Tanner graph for a 5× 5 rotated surface code. Dashed lines represent Z-type
Pauli operators and solid X-type Pauli operators.

7a. How many logical qubits does this code encode?

7b. Find weight-5 logical operators XL and ZL for this code.

7c. The footprint of a QEC code is defined as the total qubit count: data qubits plus
auxiliary/measurement qubits. What is the ratio of footprints for the distance-d rotated
surface code to the distance-d standard surface code?

Problem 8: Implementing the 7-qubit Steane Code in
Pennylane

The 7-qubit Steane code is defined by the stabiliser group S generated by:

S = 〈S〉 =

〈I1I2I3X4X5X6X7

I1X2X3I4I5X6X7

X1I2X3I4X5I6X7

I1I2I3Z4Z5Z6Z7

I1Z2Z3I4I5Z6Z7

Z1I2Z3I4Z5I6Z7

〉
,
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8a. Show that the |0〉L logical state of the Steane code can be prepared using the following
operation on the blank state:

|0〉L =
∏

P∈〈S〉

I + Pi√
2|〈S〉|

|0000000〉

8b. The circuit shown in Figure 5 can be used to map the blank state |0000000〉 onto the
+1 eigenspace of the X-type stabiliser IIIXXXX.

|0〉1

|0〉2

|0〉3

|0〉4

|0〉5

|0〉6

|0〉7

|0〉A1 H

X

X

X

X

H

P

Project onto (+1)
eigenspace of (IIIXXXX)

Figure 5: Circuit to map the blank state |0000000〉 onto the +1 eigenspace of the X-type
stabiliser IIIXXXX.

Explain why the classical feedback is required to ensure the output state is in the +1
eigenspace. Find an appropiate form of the feedback operation P .

8c. Implement the full encoding circuit for the 7-qubit Steane code in Pennylane. You may
use the circuit from Figure 5 as a subroutine and repeat for all stabilisers. Hint: You can
use the function qml.cond to implement classical feedback based on measurement results.
To verify that the stabiliser readout is deterministic, implement a full round of stabiliser
measurements after the encoding circuit. Then check that all stabiliser measurements are
deterministally by measuring out the auxiliary qubits with qml.sample for multiple shots.

8d. By inserting Pauli-errors after the encoding circuit, verify that your implementation
can detect all single-qubit errors by creating the corresponding syndrome table.
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